SDC 306

Microprocessor-controlled system control unit for solar thermal systems

Installation and Operating Instructions

IMPORTANT

Before installing and using this device, you must read through the instructions carefully.

Failure to observe the instructions and safety information contained in these installation and operating instructions will void the guarantee for the device described/installed.

Store these instructions in a safe place.

15.06.2009 1316BED036-11B-E

Table of contents

1 SAFETY INS	STRUCTIONS	4
2 SYMBOLS A	AND ABBREVIATIONS	5
3 DEVICE DES	SCRIPTION	6
3.1 Usage		6
3.2 Device fe	atures	6
4 OVERVIEW	OF DEVICE COMPONENTS	6
5 DEVICE INS	TALLATION	7
5.1 Opening	the device (only by qualified personnel)	7
5.2 Wall-mou	inted installation	8
6 ELECTRICA		9
6.1 230 V cor	nections	10
6.1.1 Overvi	iew: 230 V connections for SDC 306	10
6.2 Attachme	ent of temperature sensor	12
7 COMMISSIC	DNING	13
8 OPERATION	N / INDICATORS	14
8.1 Overview	of displays and operating controls	14
8.2 Display –	maximum display	15
8.3 Explanati	ion of graphic symbols	15
8.4 Example	of device operation	20
9 MENU STRU	JCTURE	21
0.4 "late" 1]	04
9.1 "Info"	J menu	21
9.2 "Program	n" 💯 menu	22
-	····· . [例]	
9.3 "Manual	operation" 🖻 menu	23
9.4 "Basic se	ettings" 📌 menu	23
9.4.1 Code e	entry	25
		25 26
	entrel functions	20
10.1.1 General C	storage cylinder	20 26
10.1.2 Yield e	estimation / yield metering	27
10.1.3 Passw	vord	27
10.1.4 Auxilia 10.1.5 Tolera	nce for solar vield	21 27
10.1.6 Increa	se in return line temperature	27
10.1.7 Return	n line monitor	28
10.1.8 Therm	al transfer	28
10.1.9 Pump	block protection	28
10.1.10 Solid f	Uel Doller ning pool booting/seconders, storage sylinder	28
10.1.11 SWIMD 10.1.12 Priority	ning poor nealing/secondary storage cylinder	28 20
10.1.13 Impuls	se-controlled circulation	29
10.1.14 Therm	al circulation	29
10.1.15 Anti-Le	egionnaire's disease function	29
10.2 System n	nonitoring	30

10.2.1Sensor monitoring10.2.2Flow monitoring	30 30
10.2.3 System protection function	30 31
11.1 Basic system diagram 1:	32
11.2 Basic system diagram 2:	33
11.3 Basic system diagram 3:	34
11.4 Basic system diagram 4:	35
11.5 Basic system diagram 5:	36
11.6 Basic system diagram 6:	37
11.7 Basic system diagram 7:	38
11.8 Basic system diagram 8:	39
11.9 Basic system diagram 9:	40
11.10 Basic system diagram 10:	41
11.11 Basic system diagram 11:	42
11.12 Basic system diagram 12:	43
11.13 Basic system diagram 13:	44
11.14 Basic system diagram 14:	45
11.15 Basic system diagram 15:	46
11.16 Basic system diagram 16:	47
11.17 Basic system diagram 17:	48
11.18 Basic system diagram 18:	49
11.19 Basic system diagram 19:	50
12 RECTIFICATION OF FAULTS	52
12.1 Faults with error message	52
12.2 Faults without error message	53
13 TECHNICAL DATA SDC 306	54
14 RESISTANCE TABLE PT1000	54

i Subject to change without notice

1 SAFETY INSTRUCTIONS

<u>\</u>

This control unit must be disconnected from the mains before any installation and wiring work is carried out.

This device may only be opened, connected and commissioned by trained personnel. In so doing, the relevant safety regulations, especially VDE 0100 must be adhered to.

- Prior to any installation or wiring work on the electric motors, always fully disconnect the device from the operating voltage and ensure that the mains supply cannot be reactivated. Never mix up the connections for the protective safety low voltage area (sensor, flow meter) with the 230 V connections. This could result in damage and hazardous voltages to the device itself and to the attached sensors and devices.
- Solar thermal systems can become very hot. There is a risk of being burnt. Take care when installing the temperature sensor.
- Install the SDC 306 in such a way that no excessive operating temperatures (>50°C) result, e.g. as a result of heat sources.

- SDC 306 is not protected against splashing and dripping. You should therefore install it in a dry location.
- For safety reasons, the system may be manually operated only for test purposes. In this operating mode, there is no monitoring of maximum temperatures or sensor functions.
- If there are signs of damage to the control unit, cables or attached pumps and valves, the systems must not be operated.
- Check whether the materials used for the piping, thermal insulation, pumps and valves are suitable for the temperatures that will occur in the system.

If you have any questions concerning your solar thermal system or your control unit, please contact your installer or supplier for advice.

2 SYMBOLS AND ABBREVIATIONS

Explanation of symbols used in operating instructions:

	Warning! This symbol indicates potential dangers and errors
1 230V !	Warning: 230 Volts This symbol indicates risk to life through high voltages.
•	List
i	Information on operation/special features
n	Instructions/procedure
?	Test/check
	Keypad for control unit

Frequently used abbreviations

Abbreviat	Meaning	Abbrevia	Meaning
ion		tion	
TColl	Temperature of collector [℃]	Min	Minimum value
TCyl	Temperature of storage cylinder [℃]	Max.	Maximum value
TTh	Temperature for thermostat [°C]	С	Kelvin unit, corresponds to 1 degree temperature difference
kWh	Energy yield in kWh	C	Degree Celsius unit
start	Start value	Td	Temperature difference
stop	Stop value	RLA	Increase in return line temperature
%	Percent	RLW	Return line monitor

Term explanations

Combination storage cylinders	Combination storage cylinders consist of two storage cylinders, a buffer storage cylinder and a hot-water storage cylinder, the latter being integrated in the upper part of the buffer storage cylinder.
Unit	A unit is a component of a system and is responsible for part of its function.
Hysteresis	In control technology, the term hysteresis is used where an upper and lower threshold value is responsible for switching (see Td Start and Td Stop).
Condenser	Electrical component for storage of electrical energy.
Shield	Electrical shields reduce the influence of electrical and magnetic fields on the signals in the cables and wires. Coaxial cables are commonly used for this purpose.
Heat station	Place at which energy is stored or transferred. In solar thermal systems, the storage cylinder is the heat station.

3 DEVICE DESCRIPTION

3.1 <u>Usage</u>

The solar thermal controllers SDC 306 are high-performance, microprocessorcontrolled control devices used to control the function of solar thermal systems.

The control units are suitable for common types of solar thermal systems. See system diagram.

These control units are designed for use in dry rooms, private homes, business and commercial premises.

Alternative use or use beyond this remit is not in accordance with its purpose. Incorrect usage can result in serious injury or death to the user or a third party and can harm the device or system and other material assets. The manufacturer/supplier shall not be liable for any damage arising from such misuse. The risk is borne by the user alone.

3.2 **Device features**

The SDC 306 range offers the following features and equipment:

- Self-explanatory, menu-driven operation
- Storage of all entered values
- Generous amount of space for wiring
- Digitally adjustable control values
- System monitoring
- Energy yield metering

- Available accessories:
- Temperature sensor PT1000

4 OVERVIEW OF DEVICE COMPONENTS

Adapter board:

No.:	Function
1	Sensor attachment
2	Attachment of outputs/ mains voltage
3	Fuse

5 **DEVICE INSTALLATION**

This control unit may be installed only in dry rooms where there is no risk of explosion. Installation on a flammable base is not permitted.

5.1 Opening the device (only by qualified personnel)

No tools are required to open the device. The upper part of the casing is locked to the lower part at two engagement points. The locking forces are such as to prevent the casing from being opened accidentally.

Holding the casing at each side, pull firmly towards you and then raise the top part of the casing until it engages. You can now install and wire up the control unit.

Prior to switching on or commissioning, you <u>must</u> ensure that the cover is closed properly such that you feel and hear it click into position on both sides.

5.2 Wall-mounted installation

When mounting the device on a wall, proceed as follows:

- Drill the fixing holes using the drilling template shown.
- Screw in the two top screws so that they protrude by 6 mm.
- Open the device as described and hang it on the two screws. You can now fit the two bottom screws.
- To avoid damage to the lower part of the casing, do not overtighten any of the screws.

You drill into walls at your own risk. Prior to drilling, please check that there are no cables, pipes or shafts in the wall; contact the property owner if necessary.

6 ELECTRICAL CONNECTION

You must observe the safety instructions in chapter 1

The device may be opened only if it has been properly disconnected from the mains and there is no risk of reconnection.

All electrical cables are connected to the unit in the lower part of the casing. The terminals on the right-hand side are those for the (low voltage) connections for sensor and flow meter. The 230 V connections are located on the left-hand side. The figure below shows the terminal field for the SDC 306.

PE	Earth wire	E1	Temperature sensor for collector
L	Phase mains	E2	Temperature sensor for bottom of storage cylinder
N	Neutral cable for mains	E3	Temperature sensor for measuring point E3
A1	Phase switching output	E4	Temperature sensor for measuring point E4
A2	Phase switching output (R3)	E5	Temperature sensor for measuring point E4
A3	Phase switching output (R2)		
A4	Potential-free switching output (R2)	WMM	Pulse generator for heat quantity measurement (WMM) (optional)

General attachment regulations:

- For all attachment wires, cut the wire sheath to a length of approx. 6 – 8 cm and unisolate the wires by approx. 10 mm from the ends.
- In the case of flexible cables, provision must be made inside or outside the device for strain relief. The wire ends must be fitted with wire-end sleeves. If necessary, PG9 screw fittings can be

used for the feedthrough on the 230 V side.

- The wires are fed into the device through the designated openings.
- All earth wires must be fixed in the terminals indicated with "PE" (Earth potential).

6.1 230 V connections

The following points must be observed for the 230 V connections:

- Where there is a fixed mains connection, it must be possible to interrupt the mains supply to the control unit outside the control unit by means of a switch. Where the mains connection is effected by means of wire and plug with earthing contact, this switch may be dispensed with.
- The control units are designed for operation with a 230 V /50 Hz mains supply. The pumps and valves to be

connected must be designed for this voltage.

- All earth wires must be connected to the terminals marked PE.
- **i** The neutral terminals (N) are electrically connected and are not switched.
- **i** The switching output (A4) is potential-free.
- **İ** The switching outputs (A1/A2/A3) are 230 V closers.

6.1.1 Overview: 230 V connections for SDC 306

The table below shows the allocation of switching outputs for the different system types. The fields with a grey background are

essential to the basic functions of the system. The white fields are designed for optional additional functions.

types.	The helds with a grey backyround are			
Configuration			Switching outputs	
Туре	Description	Output	Description	
		A1	Solar circuit pump	
1	1 collector array, 1 storage cylinder			
	1 collector array, 1 storage cylinder,	A1	Solar circuit pump	
2	auxiliary heating, anti-Legionnaire's	A2	Anti-Legionnaire's disease pump	
	disease	A4	Auxiliary heating	
	1 collector orrow 1 store coulinder		Solar circuit pump	
3	auxiliary heating, circulation	A2	Circulation pump	
		A4	Auxiliary heating	
	1 collector array, 2 storage cylinders,	A1	Solar circuit pump	
4		A2	Transfer pump	
	anormal transfer, auxiliary fieating	A4	Auxiliary heating	

	1 collector array, 1 storage cylinder, solid	A1	Solar circuit pump
5		A2	3-way valve return line
			Solid fuel boiler pump
	1 collector array, 1 storage cylinder,		Solar circuit pump
6	auxiliary heating, return line temperature	A2	3-way valve return line
	increase	A4	Auxiliary heating
	1 collector array, 1 storage cylinder	A1	Solar circuit pump
7	auxiliary beating, return line monitor	A2	3-way valve return line
	adxinary fielding, ferant interfield	A4	Auxiliary heating
	1 collector array, 2 storage cylinders (hot	A1	Solar circuit pump
8	water and buffer), return line temperature	A2	3-way valve solar
	increase	A3	3-way valve return line
	1 collector array, 2 storage cylinders (hot	A1	Solar circuit pump
9	water and buffer), return line temperature	A2	Buffer cylinder solar pump
	increase	A3	3-way valve return line
	1 collector array, 1 storage cylinder,	A1	Solar circuit pump
10	swimming pool, return line temperature	A2	3-way valve solar
	increase	A3	3-way valve return line
	1 collector array, 1 storage cylinder, swimming pool, return line temperature	A1	Solar circuit pump
11		A2	Solar pump for swimming pool
	increase	A3	3-way valve return line
	1 collector array, 1 storage cylinder, swimming pool, auxiliary heating	A1	Solar circuit pump
12		A2	3-way valve solar
		A4	Auxiliary heating
	1 collector array, 1 storage cylinder, swimming pool, auxiliary beating	A1	Solar circuit pump
13		A2	Solar pump for swimming pool
		A4	Auxiliary heating
	2 collector array, 1 storage cylinder, auxiliary heating	A1	Solar circuit pump
14		A2	Solar pump 2
		A4	Auxiliary heating
	2 collector arrays, 1 storage cylinder, increase in return line temperature	A1	Solar circuit pump
15		A2	Solar pump 2
		A3	3-way valve return line
	1 collector array, 1 storage cylinder, circulation, anti-l egionnaire's disease	A1	Solar circuit pump
16		A2	Circulation pump
		A3	Anti-Legionnaire's disease pump
	1 collector array, 1 storage cylinder,	A1	Solar circuit pump
17	thermal transfer, return line temperature	A2	3-way valve return line
	Increase	A3	Transfer pump
	1 collector array, 1 storage cylinder.	A1	Solar circuit pump
18	thermal transfer, return line monitor	A2	3-way valve return line
	,	A3	Transfer pump
	1 collector array, 1 storage cylinder,	A1	Solar circuit pump
19	thermal transfer, return line monitor (with	A2	3-way valve return line
solid fuel boiler)		A3	Transfer pump

6.2 <u>Attachment of temperature sensor</u>

The SDC 306 devices work with precise platinum temperature sensors of type PT1000. Between 2 and 5 sensors are required, depending on the scope of function.

Installation/wiring of temperature sensor:

- Install the sensors at the requisite places on the collector and the storage cylinder. In so doing, ensure good temperature transmission and, if necessary, use a thermally conductive paste.
- The cables of the temperature sensors can be extended. For lengths up to 15 m, a cross-section of 2 x 0.5 mm² is required; for lengths up to 50 m, a crosssection of 2 x 0.75 mm² is necessary. In the case of long connections (collector), shielded extension cables must be used. Do not attach the shield on the sensor side; instead cut it to length and insulate it.
- The temperature sensors are connected in accordance with the system diagram. In the case of temperature sensors, there is no need to observe the polarity of the two wires.
- To protect the collector sensor within the control unit, the use of a lightning protection device (accessories) is recommended.
- Sensor wiring must be laid separately from 230 V wires.

Prior to switching on or commissioning, you <u>must</u> ensure that the cover is closed properly such that you feel and hear it click into position on both sides.

7 COMMISSIONING

Commission your control	unit in the following sequer	nce	:
Are the collector and sto correctly mounted	rage cylinder sensors		
Has the correct sensor type been selected (PT1000)?			
Yes	No	→	Select and install the correct sensor
↓		1	
Is the power cable for the to the pump and the con	e pump connected correctly trol unit?		
Yes	No	→	Connect the cables correctly
•		٦	
If the pump is powered c does the pump work?	lirectly via a mains cable:		
Yes	No	→	Test the pump cable,
Unplug the mains plug	Unplug the mains plug		test the pump
Deconnect the nump to t	the control unit	1	
Are the sensor cables fo	r the collector and storage		
cylinder sensors correctl	y connected to the relevant		
control unit terminals?	NI -		
Yes L	NO	7	Connect sensors correctly
	witched off connect the	1	
control unit and then swi	tch on the mains supply (e.g.		
via a safety fuse):			
9			
Does data appear on the	e display		
Yes	NO	7	I est the fuse on the device
<u> </u> ↓			Check the fuse protection on the mains
Susing the programming	monu set the correct time	1	
\bigcirc On the basic settings me	anter the activation code		
(preset: 0000).			
On the basic settings menu, enter your system diagram.			
• On the basic settings menu, change the parameters			
\square Enter the parameters (e.g. time window by steres is			
etc.) on the program menu.			
Poes the system run as it should?			
Yes	No	→	Check the parameters
			Rectify fault as described in section 12
•		٦	
Control unit is ready for use).		

8 OPERATION / INDICATORS

8.1 Overview of displays and operating controls

The SDC 306 control unit is operated comfortably and simply by means of 4 buttons. The operating buttons allow you to:

- Access display values
- Enter device settings

The graphic symbols on the display unit lead you simply through the operating structure and provide a clear overview of the current menu options, display values and parameters.

Number	Description		
1	Display with graphic symbols		
2		"Up" "+"	 Upwards menu item Change of values: increase the displayed value by 1; press and hold the button to increase the values continuously
3		"Access" "Down" " ⁻ "	 Access a main menu, downwards menu item Change of values: lower the displayed value by 1; press and hold the button to decrease the values continuously
4		"Scroll left" "Exit" "Cancel" "Reset button"	 Scroll to the left on the main menu Exit a menu Exit a menu item Cancel a change to a value without saving
5		"Scroll right" "Select" "Confirmation"	 Scroll to the right on the main menu Select a menu item Confirm a change to a value by saving

8.2 <u>Display – maximum display</u>

In the following graphic, all symbols that can appear on the display during operation are displayed simultaneously. In real-time operation, depending on the menu position, only some of these symbols will appear.

Main menu

Display values

Allocation of measuring points

Status display

8.3 Explanation of graphic symbols

The meaning of the individual symbols is given in the table below.

Graphic symbol	Description	Display during operation		
Main menu				
i	"Info" menu			
	"Program" menu	Symbol flashes if it can be selected		
	"Manual operation" menu			
~	"Basic settings" menu			

During selection,	the active	symb	ool flashes. If	the menu is sele	ected	using the		button, the
corresponding	symbol	is	displayed	permanently.	All	others	are	hidden.

Graphic symbol	Description	Display during operation				
Display values						
Td	Temperature difference					
start	Start value	Appears when start values are displayed				
stop	Stop value	Appears when stop values are displayed				
min	Min. value	Appears when minimum values are displayed				
max	Max. value	Appears when maximum values are displayed				
888:8.8	5 x 7 segment display Display of numbers 00000 to 99999	Display of all numeric values, display flashes if value is changed				
3 °	Temperature in degrees Celsius					
%	Percentage value	Appears when glycol percentage is displayed				
K	Temperature difference in Kelvin					
h	Operating hours					
kWh	Display yield in kWh.					
	Control circuit ass	signment				
R 2	Control circuit 2 (switches 3 and 4 parallel)	Sensor number and position of sensors relate to the control circuit R2.				
R 2 ⊗	Time slot for control circuit 2	"Start" und "Stop" refer to the time slot for R2.				
R 3	Control circuit 3 (switches output A2)	Sensor number and position of sensors relate to the control circuit R3.				
R∃ ⊗	Time slot for control circuit 3	"Start" und "Stop" refer to the time slot for R3.				
\mathbb{R}^{r_1}	Control circuit circulation (switches output A2)	Sensor number and position of sensors relate to the control circuit R2.				
Both lines rotate.						
R ', ⊗	Timeframe 1 circulation	"Start" und "Stop" refer to the timeframe1 for circulation.				
		Both lines rotate.				
	Timeframe 2 circulation	"Start" und "Stop" refer to the timeframe 2 for circulation.				
		Both lines rotate.				
	Sensor num	ber				

	Temperature sensor 1	
12	Temperature sensor 2	
	Temperature sensor 3	
	Temperature sensor 4	
15	Temperature sensor 5	
	Position of ser	isors
*	Collector array	Is displayed together with the relevant sensor number. If there are two collector arrays, a 1 or 2 is displayed on the right- hand side of the collector symbol.
	Top of storage cylinder	Is displayed together with the relevant sensor number. If there are two storage cylinders, a 1 or 2 is displayed on the right-hand side of the storage cylinder.
F	Middle of storage cylinder	Is displayed together with the relevant sensor number. If there are two storage cylinders, a 1 or 2 is displayed on the right-hand side of the storage cylinder.
	Botton of storage cylinder	Is displayed together with the relevant sensor number. If there are two storage cylinders, a 1 or 2 is displayed on the right-hand side of the storage cylinder.
(La la	Centre of transfer storage cylinder	Is displayed together with the relevant sensor number.
	Swimming pool	Is displayed together with the relevant sensor number.
	Storage cylinder at bottom (buffer)	Is displayed together with the relevant sensor number.
	Storage cylinder 2 at top (buffer)	Is displayed together with the relevant sensor number.

Position of sensors				
R	Sensor in return line if there is a return line monitor	Is displayed together with the relevant sensor number.		
† R	Sensor in return line if there is increase in temperature through a return line monitor	Is displayed together with the relevant sensor number.		
##	Solid fuel boiler	Is displayed together with the relevant sensor number.		
X	Collector supply	Is displayed together with the relevant sensor number.		
	Adjustment para	meters		
max	Maximum storage cylinder temperature	Is displayed in the programming menu. Unit: \mathfrak{C} (degrees Celsius)		
		2 is displayed on the right-hand side of the storage cylinder.		
Td start	Switch-on hysteresis for the solar	Is displayed in the programming menu.		
	circuit	Unit: K (Kelvin)		
		If there are two storage cylinders, a 1 or 2 is displayed on the right-hand side of the storage cylinder.		
Td stop	Switch off hysteresis for the solar circuit	Is displayed in the programming menu.		
		If there are two storage cylinders, a 1 or 2 is displayed on the right-hand side of the storage cylinder.		
min	Minimum temperature for	Is displayed in the programming menu.		
	auxiliary heating	Unit: °C (degrees Celsius)		
		Sensor number and control circuit are also displayed.		
max.	Maximum temperature of the	Is displayed in the programming menu.		
(โม)	in middle)	Unit: °C (degrees Celsius)		
		Sensor number and control circuit are also displayed.		
Td start	Switch on hysteresis for control	Is displayed in the programming menu.		
R 2		Unit: K (Kelvin)		
		Reference sensors for source and sink flash alternately.		
Td stop	Switch off hysteresis for control	Is displayed in the programming menu.		
CIrcuit 2	Unit: K (Kelvin)			

R 2		Reference sensors for source and sink flash alternately.		
Ø	System time	Is displayed in the programming menu.		
	Status displ	lay		
	Solar circuit pump	Symbol rotates when the solar circuit pump is switched on		
– ° > -1	Switching output 1 is active	Appears if switching output 1 is active (on).		
2	Switching output 2 is active	Appears if switching output 2 is active (on).		
-~` ∃4	Switching outputs 3 and 4 are active (switched in parallel)	Appears if switching output 3 and 4 are active (on).		
\triangle	Indicates a system error or incorrect code entry	Display flashes if an error occurs in the system. Lights up if the wrong code is entered.		
ok?	Safety question for value changes with save facility	Value input can be rejected Or accepted O.		
Ŕ	Note on risk from legionella bacteria	Display flashes together with the warning symbol. These symbols flash when there is a fault with the anti-legionella function. For further information, see section 10.1.15		
Other displays				
	Flow rate			
(D) _{kWh}	Total yield for storage cylinder	If there are two storage cylinders, a 1 or 2 is displayed on the right-hand side of the storage cylinder.		
k₩h	Daily yield for storage cylinder	If there are two storage cylinders, a 1 or 2 is displayed on the right-hand side of the storage cylinder.		

8.4 Example of device operation

Once you have familiarised yourself with the menu descriptions as described in the "Operating menus" chapter, you can practice by carrying out the operating steps. The starting point is the current collector temperature on the "Info" menu. Aim: change to "Solar circuit Td stop" circuit from 3K to 4K in "Program" menu. This example relates to configuration (system diagram) 1.

White: symbol lights up continuously Grey: symbol flashes

Button	Function	Graphic display following operational step		Description		
	"Exit"	i				Exit the "Info" menu
	"Scroll right"	i				Selection of "Programming" menu
	"Access"		start 7:00	R 2 ⊘		Access of "Programming" menu; the first menu item appears
	"Down"		Td stop 3 K	×		Keep pressing until the menu item "Td stop" appears
	"Select"		Td stop 3 K			Select the parameter shown
\bigcirc	"Up"		Td stop 4 K	×.		Increase the parameter value from 3K to 4K
	"Confirm		Td stop 4 K	×	ok?	Confirm the parameter
	"Confirm "		Td stop 4 K	×		Store the parameter
	"Exit"	i				Exit "Programming" menu
	"Scroll left"	i				Select the "Info" menu
	"Access"	i	3 00	*] ;		Access of "Info" menu

9 MENU STRUCTURE

To facilitate simple operation of the device, the device, operating and display functions are combined into 4 groups (= main menu).

The four menus

- Information
- Program
- Manual operation
- Basic setting

provide information on your solar thermal system.

The currently active menu is displayed by means of the relevant graphic symbol in the top row of the display.

Menu	Overview of functions contained				
Information	Main menu for the automatic control of the solar system.				
i	 Display of current measured values 				
	 Display of system status 				
	Display of error messages				
	 Display of energy yield (if existing) 				
Program	Change and set the programmable setting values (parameters)				
	Note: Changes can impede system functions				
Manual operation	Switching the connected pumps/valves on and off manually				
Basic setting	Information on the basic settings for the system function.				
	Note: Settings and changes may only be carried out by trained personnel.				

9.1 <u>"Info" i menu</u>

In this operating mode, all measured values and operating states are displayed.

i Only the configuration-specific symbols are displayed.

Resettable values such as minimum and maximum temperatures, daily yield and overall yield can be reset as follows:

Select value using the \bigcirc and \bigcirc buttons
Reset value using the button

• Confirm "OK?" message with \bigcirc = no or \bigcirc = yes

9.2 <u>"Program" 🖉 menu</u>

All changeable parameters can be checked in this menu and changed if necessary. Common values are set at the factory, which will generally ensure that the system functions correctly. The number of displayed values depends on the type of controller and the additional functions set. Only the values required in each case are displayed.

i Only the configuration-specific symbols are displayed!

Parameters	Value range	Factory setting
Timeframe R2 start	0:00 - 23:59	7:00 – 22:00
Timeframe R2 stop	0:00 - 23:59	7:00 – 22:00
Timeframe R3 start	0:00 - 23:59	7:00 – 22:00
Timeframe R3 stop	0:00 - 23:59	7:00 – 22:00
Timeframe 1 circulation start	0:00 - 23:59	7:00 – 22:00
Timeframe 1 circulation stop	0:00 - 23:59	7:00 – 22:00
Timeframe 2 circulation start	0:00 – 23:59	7:00 – 22:00
Timeframe 2 circulation stop	0:00 – 23:59	7:00 – 22:00
Storage cylinder 1 maximum temperature	5℃ – 95℃	8 5℃
Solar circuit Td start	3K – 20K	6K
Solar circuit Td stop	2K – 18K	3K
Storage cylinder 2 maximum temperature	5℃ – 95℃	8 5℃
Maximum temperature of swimming pool	5℃ – 50℃	25℃
Solar circuit 2 Td start	3K – 20K	6K
Solar circuit 2 Td stop	2K – 18K	3K
Start temperature, auxiliary heating	5℃ – 90℃	60° C
Thermal switch-on threshold*	20℃ – 55℃	40 ℃
Boiler Td start	3K – 20K	6K
Boiler Td stop	2K – 18K	3K
RLA/RLM Td start	3K – 20K	4K
RLA/RLM Td stop	2K – 18K	2K
Maximum temperature for transfer storage cylinder	20℃ – 95℃	85°C
Transfer Td start	3K – 20K	6K
Transfer Td stop	2K – 18K	3K
Set the time	0:00 - 23:59	12:00
Maintenance (or summer/winter)**	0 – 1	0

* The thermal switching threshold is the temperature that is maintained in the pipes (as a minimum). To prevent rapid switching on and off, a hysteresis of 5K is used.

** If maintenance is activated or if the system is set to winter (=1), the swimming pool will not be heated (affects systems 10 and 11). If maintenance is deactivated or switched to summer (=0), then loading takes place according to the primary/secondary principle.

9.3 <u>"Manual operation" ¹ menu</u>

For the purposes of servicing and testing, the solar thermal system can be operated manually. To facilitate this, the 230 V or switching outputs or the potential-free output can be switched on and off. During manual operation, there is no automatic control of the system. In order to prevent improper operating conditions, after approximately 8 hours of this type of operation, the program switches automatically to "Display" and automatic control is reactivated.

Display 😰	Meaning	Value range
	Switching the switching output A1 (solar circuit pump) on or	0 = off
		1 = on
	Switching the switching output A2 on or off manually	0 = off
2		1 = on
- <u></u>	Switching the switching outputs A3 on or off manually	0 = off
E		1 = on
	Switching the switching outputs A4 on or off manually	0 = off
<u> </u>		1 = on

9.4 <u>"Basic settings" menu</u>

Settings and changes in this menu may only be made by the installer or trained personnel. Incorrect settings can impair the function of the control unit and the solar thermal system.

To prevent accidental changes in the "Basic settings" menu, it cannot be edited under normal operation; the data can be displayed only. **To be able to carry out changes, the activation code must be entered.** You are then able to edit data for an unlimited

period. This facility to edit is blocked once you exit the basic settings menu and can only be reactivated one you have entered the relevant code.

İ Only the configuration-specific symbols are displayed!

Display		Meaning	Value range	Factory
Parameters	value			oottiing
С	0000	Code entry to activate facility to edit	0000 - 9999	0000
00	0	Activate factory setting/reset	0 - 1	0
01	1	Select configuration	1 – 19	1
10	120	Maximum collector temperature	90℃ – 150℃	120°C
11	1	Priority storage cylinder 1 – cylinder 1 2 – storage cylinder 2 / swimming pool	1 – 2	1
20	0	Mode yield metering 0 – off 1 – yield estimation 2 – yield metering	0 - 2	0
21	0.0	Volume flow (internal value)	0.0 — 50.0 l	0.01
22	0.25	Flow meter	0.0 –50.0 l/min	0.25 l/min
23	1	Glycol type 1 - Tyfocor L5.5 2 - Tyfocor LS, ready mix 3 - Dowcal 10 4 - Dowcal 20 5 - Dowcal N	1 – 5	1
24	40	Glycol percentage	0% - 100%	40%
30	10	Tolerance for solar yield	0K – 80K	10K
40	1	Period for anti-Legionnaire's disease function	1 or 7 days	1
50	1	Circulation mode 1 – thermal circulation 2 – impulse-controlled circulation	1 – 2	2
51	5	Power-on time for circulation	1 – 15 min	5 min
52	5	Restart interlock for circulation	1 – 10 min	5 min
60	60	Minimum temperature for boiler	15°C - 90°C 60°C	
61	90	Maximum temperature for boiler	30℃ – 130℃	90°C
70	50	Maximum temperature for sink	30℃ – 70 ℃	50°C
CodE		Change to code	0000 - 9999	

The value range "Tolerance for solar yield" and the lower limit of the value range "Start temperature for auxiliary heating" are interdependent. This means that the value for "Start temperature for auxiliary heating" cannot be changed so as to be lower than

that for "Tolerance for solar yield". Equally, the value for "Tolerance for solar yield" cannot be changed so as to be higher than that for "Start temperature for auxiliary heating".

9.4.1 Code entry

9.4.2 Code change

Once the basic settings menu has been activated, the "CodE" parameter starts to flash. If you wish to change the password, confirm with the OK button. The first digit flashes. Proceed as per code entry. Once you have entered the code, the "OK?" symbol and "C0000" light up for approx. 5 seconds. The code has now been stored.

10 CONTROLLER FUNCTIONS

The SDC 306 controllers include comprehensive functions for controlling and monitoring the solar thermal system. A basic distinction is made between:

• Control functions for loading the storage cylinder

10.1 General control functions

The control unit records the temperatures from the various measuring points and calculates the correct time to load the storage cylinders, based on the programmed (additional) functions and control parameters. To prevent the pump from switching on and off due to only minimal differences in temperature, a switch-on hysteresis, e.g. 7K and switch-off hysteresis, e.g. 3K is preset.

· Functions for system protection and

system monitoring

Additional functions

10.1.1 L	.oad storage	e cylinder
----------	--------------	------------

Relevant values in menu		
"Program"		
Maximum temperature		
Td start		
Switch-on temperature difference		
Td stop		
Switch-off temperature difference		

The storage cylinder is loaded to the specified maximum temperature via the pump on output A1, provided the collector temperature is a certain amount higher than that of the storage cylinder temperature. The switching behaviour can be set via Td

start and Td stop, whereby the value for Td start cannot be lower than that for Td stop + 1. To prevent the pump from switching on and off due to only minimal differences in temperature, a hysteresis of 5K is preset as the storage cylinder maximum temperature.

10.1.2 Yield estimation / yield metering

For the purposes of yield estimation (heat quantity), the collector sensor serves as a reference sensor for the hot flow, the storage cylinder sensor at the bottom serves as a reference sensor for the cool return line. The volume flow, type of glycol and glycol concentration are entered in the control unit. A daily yield value is calculated from these five values and can be

10.1.3

10.1.4

The parameters contained in the "Basic settings" menu can be changed only following entry of a 4-digit numerical

For the upper part of the storage cylinder (standby capacity), a start temperature for auxiliary heating is preset. Once the temperature of the water reaches this temperature, the auxiliary heating is triggered so that the water cannot fall below

In the case of a solar yield from the

collector, the "Start temperature for auxiliary

heating" (minimum temperature) is reduced by the amount set for "Tolerance for solar

vield". In other words, if loading takes place

between the collector array and the storage

displayed. Adding together the daily yields, in each case at 0:00 gives the total amount which can also be displayed. The yields can be reset manually.

For the purposes of yield metering, instead of entering a volume flow, the value measured by a flow meter is processed as volume flow.

Password

password. Once the password has been entered, it can also be changed.

Auxiliary heating r this temperature. A clock timer is available r for this function.

To prevent the pump from switching on and off due to only minimal differences in temperature, a hysteresis of 5K is preset.

10.1.5 Tolerance for solar yield

cylinder, the auxiliary heating is triggered to reach a reduced value (e.g. $60^{\circ}C - 10K = 50^{\circ}C$). If no loading takes place for at least 15 minutes, the reduction is removed again. This allows the solar thermal system to provide higher yields.

10.1.6 Increase in return line temperature

In the case of solar thermal systems with auxiliary heating, the solar energy from the storage cylinder can be used via a temperature increase in the boiler return. If there is a difference in temperature between the return line of the heating circuit and the base/centre of the solar storage cylinder, a 3-way valve is activated so that the lower part of the combination storage cylinder runs in series to the heating return line.

To prevent the pump from switching on and off due to only minimal differences in temperature, a hysteresis is preset.

10.1.7 Return line monitor

In the case of solar thermal systems with auxiliary heating and where there is a heat station, the return line of the heating circuit is layered into the storage cylinder. Depending on the temperature difference between the return line and the solar storage cylinder in the middle, a 3-way valve is triggered in order to layer the return

storage cylinder. The heating flow is connected to the upper part of the solar storage cylinder.

line at the bottom or centre of the solar

To prevent the pump from switching on and off due to only minimal differences in temperature, a hysteresis is preset.

10.1.8 Thermal transfer

In the case of systems with a storage cylinder and an additional solar storage cylinder, this function transfers the water heated by solar power from the solar storage cylinder to the conventionally heated storage cylinder. To prevent the pump from switching on and off due to only minimal differences in temperature, a hysteresis is preset.

10.1.9 Pump block protection

All pumps that have not run for 24 hours are switched on for approximately 5 seconds

10.1.10 Solid fuel boiler

Activation conditions for the loading pump are that:

- 1. the boiler temperature is 5K higher than the minimum temperature of the boiler and,
- 2. the boiler temperature is 5K lower than the maximum temperature of the boiler and,
- the storage cylinder temperature is 5K lower than the storage cylinder maximum temperature, and
- 4. the difference between the boiler temperature and storage cylinder temperature is higher than the switch-on hysteresis.

Deactivation conditions for the loading pump are that:

each day between 12.00 and 12.01.

- 1. the boiler temperature is lower than the minimum temperature for the boiler, or
- 2. the maximum boiler temperature is reached, or
- 3. the storage cylinder temperature has reached the maximum storage cylinder temperature, or
- 4. the difference between boiler temperature and storage cylinder temperature is less than the switch-off hysteresis.

10.1.11 Swimming pool heating/secondary storage cylinder

The second solar consumer "swimming pool" is operated as per a standard system (storage cylinder). The difference between this and a buffer storage cylinder is a lower hysteresis of 1K.

10.1.12 **Priority switching**

The solar circuit has priority for loading the storage cylinder. If the temperature in the solar circuit is too low or if the maximum temperature of the storage cylinder is reached, the system switches to the swimming pool circuit/secondary circuit. An increase in temperature of the collector is monitored. If, within 5 minutes, the collector temperature has risen by more than 1K, the control unit shuts off the secondary loading and blocks off the latter for a period of 4

minutes. During this period, the control unit waits for the switch-on condition for the priority loading. Once this period has elapsed or if the control unit has reverted to priority load status, the block against secondary loading is lifted. After no longer than one hour of swimming pool heating/secondary storage cylinder heating, this is interrupted and the switch-on conditions for the priority storage cylinder are checked for a period of 4 minutes.

10.1.13 Impulse-controlled circulation

The circulation pump can be controlled as per demand. Shortly before hot water is removed from the system, a request for heat is sent to the control unit by means of a button or by briefly opening the hot water tap (min. 1 s). The circulation switch is used to start the circulation pump for an adjustable time. Once this active period has elapsed, the pump is then blocked from being reactivated for a certain (adjustable) period.

10.1.14 Thermal circulation

In the case of thermal circulation, the potable water supply is held at a preset minimum temperature (thermostatic function) within two adjustable timeframes. To prevent the pump from switching on and off due to only minimal differences in temperature, a hysteresis of 5K is preset.

10.1.15 Anti-Legionnaire's disease function

A check is made at regular intervals (every day, every week) as to whether the water in the storage cylinder was at 60° for at least one hour in this period. If not, then between 16 and 18:00 hours, the system attempts to heat the water in the storage cylinder to 65° and to maintain it at a temperature of 60° . If the water in the storage cylinder does not reach this temperature within these two hours or if, within the space of an

hour, the temperature falls again to below 60° , an error is reported. However, the control functions are retained. If the temperature of 60° was maintained for at least one hour, the anti-Legionnaire's disease routine is reset and the monitoring process starts from this time point. This function is designed to prevent the growth of legionella bacteria.

10.2 System monitoring

If an error occurs, the $\angle \underline{|}$ symbol will always flash.

10.2.1 Sensor monitoring

The sensors required for the control functions and their connection cables are monitored for breakage and short circuit. If a defective sensor is recognised by the

software, the \checkmark symbol is displayed. The source of the error can be found by scrolling. Important:

The use of incorrect temperature sensors can therefore also lead to one of the error messages.

Display	Meaning
	Short circuit of temperature sensor for current measuring point
	Break to temperature sensor of current measuring point, circulation error if energy yield estimation is activated

10.2.2 Flow monitoring

Display	Meaning
	No circulation in solar circuit

In the case of the controller SDC 306, the temperature difference between the collector and the storage cylinder is checked. If this exceeds the amount of (60K + Td start), this is interpreted as an error because such large differences should not arise given normal system dimensions and assuming that the pump is switched on.

In the case of the SDC 306 control unit, the flow quantity is checked when the pump is switched on. If, for a period of approx. 30 minutes, no flow is detected, this is interpreted as an error.

The error message is automatically reset once the fault has been removed.

10.2.3 System protection function

The system protection function switches the system off if the "maximum collector temperature" is exceeded. As soon as the

temperature drops 15K below this value, the system is started up again.

11 System DIAGRAMS

There are 19 main configurations for solar control unit SDC 306.

Output A1 is switched via the solar control circuit. The two outputs A3 (230V) and A4

(potential-free) are switched in parallel via the control circuit R2. Output A2 is switched via the control circuit R3.

Control circuit	Outputs
Solar circuit	A1
Control circuit R2	A3 (230V) and A4 (potential-free) parallel
Control circuit R3	A2

i The following system diagrams are not to be understood as complete hydraulic circuit diagrams.

11.1 Basic system diagram 1:

1 collector array, 1 storage cylinder

System 1 has one collector surface and one possible storage cylinder. Heat metering is also

possible, e.g. using an impeller flow meter.

i			
Info	Program	Manual operation	Basic setting
I	I		1
Current collector temperature (E1)	Timeframe R2 start	Pump A1 off/on	Code entry
Minimum collector temperature (E1)	Timeframe R2 stop	A2 off/on	Reset/factory setting
Maximum collector temperature (E1)	Maximum temperature of	A3 off/on	Select basic configuration
Current storage cylinder temperature at bottom (E2)	Solar circuit Td start	A4 off/on	Maximum collector temperature
Minimum storage cylinder temperature at bottom (E2)	Solar circuit Td stop		Mode yield metering
Maximum storage cylinder temperature at bottom (E2)	Start temperature, auxiliary heating		Volume flow *
Current storage cylinder temperature at top (E3)	Set time		DFG/WMM **
Minimum storage cylinder temperature at top (E3)			Glycol type *
Maximum storage cylinder temperature at top (E3)			Glycol percentage *
Flow rate *			Tolerance for solar yield
Daily yield *			Period for anti- Legionnaire's function
Total yield *			Code change

* Displayed only if yield metering is active.

11.2 Basic system diagram 2:

1 collector array, 1 storage cylinder, auxiliary heating, anti-Legionnaire's disease

System 2 has one collector surface, one storage cylinder, one auxiliary heating function and one anti-Legionnaire's disease function. The control unit controls the solar function (temperature difference regulation), the auxiliary heating (thermostat, timeframe) and the anti-Legionnaire's disease function (thermostat, timeframe \rightarrow a preset, fixed period). Heat metering is also possible, e.g. using an impeller flow meter. For the anti-Legionnaire's disease function E2 is used as reference sensor.

i			
Info	Program	Manual operation	Basic setting

I		I	I
Current collector temperature (E1)	Timeframe R2 start	Pump A1 off/on	Code entry
Minimum collector temperature (E1)	Timeframe R2 stop	A2 off/on	Reset/factory setting
Maximum collector temperature (E1)	Maximum temperature of storage cylinder	A3 off/on	Select basic configuration (system diagram)
Current storage cylinder temperature at bottom (E2)	Solar circuit Td start	A4 off/on	Maximum collector temperature
Minimum storage cylinder temperature at bottom (E2)	Solar circuit Td stop		Mode yield metering
Maximum storage cylinder temperature at bottom (E2)	Start temperature, auxiliary heating		Volume flow *
Current storage cylinder temperature at top (E3)	Set time		DFG/WMM **
Minimum storage cylinder temperature at top (E3)			Glycol type *
Maximum storage cylinder temperature at top (E3)			Glycol percentage *
Flow rate *			Tolerance for solar yield
Daily yield *			Period for anti- Legionnaire's function
Total yield *			Code change

* Displayed only if yield metering is active.

11.3 Basic system diagram 3:

1 collector array, 1 storage cylinder, auxiliary heating, circulation

System 3 has one collector surface, one storage cylinder, one auxiliary heating function and one timer-controlled or impulse-controlled circulation. The control unit controls the solar function (temperature difference regulation), auxiliary heating function (thermostat, timeframe) and the impulse-controlled circulation (impulse) or thermal circulation (thermostat, 2 timeframes). Heat metering is also possible, e.g. using an impeller flow meter.

* Displayed only if yield metering mode is equivalent to 1 or 2.

** Displayed only if yield metering mode is equivalent to 2.

*** Displayed only if impulse-controlled circulation is active.

**** Displayed only if thermal circulation is active.

11.4 Basic system diagram 4:

1 collector array, 2 storage cylinders (hot water), thermal transfer, auxiliary heating

System 4 has one collector surface, two storage cylinders, a transfer function and an auxiliary heating function. The control unit controls the solar function (temperature difference regulation, the thermal transfer

x

(temperature difference regulation, timeframe) and the auxiliary heating (thermostat, timeframe). Heat metering is also possible, e.g. using an impeller flow meter.

A1 WMM	E4		
i			
Info	Program	Manual operation	Basic setting
<u> </u>	<u> </u>		<u> </u>
Current collector temperature (E1)	Timeframe R2 start	Pump A1 off/on	Code entry
Minimum collector temperature (E1)	Timeframe R2 stop	A2 off/on	Reset/factory setting
Maximum collector temperature (E1)	Timeframe R3 start	A3 off/on	Select basic configuration
Current storage cylinder temperature at bottom (E2)	Timeframe R3 stop	A4 off/on	Maximum collector temperature
Minimum storage cylinder temperature	Maximum temperature of		Mode yield metering
at bottom (E2)	storage cylinder		
Maximum storage cylinder temperature at bottom (E2)	Solar circuit Td start		Volume flow *
Current thermal transfer storage temp. in middle (E3) for R2 and R3.	Solar circuit Td stop		DFG/WMM **
Minimum thermal transfer storage	Start temperature, auxiliary		Glycol type *
terrip. In middle (E3) for R2 and R3.	neating		
iviinimum thermal transfer storage	iviax temp. of transfer		Glycol percentage *
Current storage temp, at ten (\mathbb{E}^4)	D2 Td stort		Toloropoo for color viold
Minimum storage cylinder tomporeture	P2 Td stop		
at top (E4)	κό τα διομ		
Maximum storage temp. at top (E4)	Set time		
Flow rate *			
Daily yield *			
Total yield *			

* Displayed only if yield metering mode is equivalent to 1 or 2.

11.5 Basic system diagram 5:

1 collector array, 1 storage cylinder, solid fuel boiler, return line monitor

System 5 has one collector surface, one storage cylinder, one solid fuel boiler and one return line monitor. The control unit controls the solar function (temperature difference regulation), the solid fuel boiler (temperature difference regulation, thermostat) and the return line temperature increase (temperature difference regulation). Heat metering is also possible, e.g. using an impeller flow meter.

FSK = solid fuel boiler

* Displayed only if yield metering mode is equivalent to 1 or 2.

11.6 Basic system diagram 6:

1 collector array, 1 storage cylinder, auxiliary heating, return line temperature increase System 6 has one collector surface, one storage cylinder, one auxiliary heating function (thermostat, timeframe) and one return line temperature increase. The control unit controls the solar function (temperature difference regulation), the

i			
Info	Program	Manual operation	Basic setting
I			I
Current collector temperature (E1)	Timeframe R2 start	Pump A1 off/on	Code entry
Minimum collector temperature (E1)	Timeframe R2 stop	A2 off/on	Reset/factory setting
Maximum collector temperature (E1)	Maximum temperature of storage cylinder	A3 off/on	Select basic configuration
Current storage temp. at bottom (E2)	Solar circuit Td start	A4 off/on	Max. collector temp.
Minimum storage temp bottom (E2)	Solar circuit Td stop		Mode yield metering
Maximum storage cylinder	Start temperature, auxiliary		Volume flow *
temperature at bottom (E2)	heating		
Current storage temp. at top (E3)	R3 Td start		DFG/WMM **
Minimum storage temp. at top (E3)	R3 Td stop		Glycol type *
Maximum storage temp. at top (E3)	Set time		Glycol percentage *
Current storage temp. at centre (E4)			Tolerance for solar yield
Minimum storage cylinder temperature at centre (E4)			Maximum temperature for return line
Maximum storage cylinder temperature at centre (E4)			Code change
Current return line temperature (E5)			
Minimum return line temperature (E5)			
Maximum return line temperature (E5)			
Flow rate *			
Daily yield *			
Total yield *			

* Displayed only if yield metering mode is equivalent to 1 or 2.

11.7 Basic system diagram 7:

1 collector array, 1 storage cylinder, auxiliary heating, return line monitor

System 7 has one collector surface, one storage cylinder, one auxiliary heating function and one return line monitor. The control unit controls the solar function (temperature difference regulation), the auxiliary heating (thermostat, timeframe) and the return line monitor (temperature difference regulation). Heat metering is also possible, e.g. using an impeller flow meter.

i			K
Information	Program	Manual operation	Basic setting
I	I		
Current collector temperature (E1)	Timeframe R2 start	Pump A1 off/on	Code entry
Minimum collector temperature (E1)	Timeframe R2 stop	A2 off/on	Reset/factory setting
Maximum collector temperature (E1)	Maximum temperature of	A3 off/on	Select basic
	storage cylinder		configuration
Current storage temp. at bottom (E2)	Solar circuit Td start	A4 off/on	Max. collector temp.
Minimum storage temp bottom (E2)	Solar circuit Td stop		Mode yield metering
Maximum storage cylinder	Start temperature, auxiliary		Volume flow *
temperature at bottom (E2)	heating		
Current storage temp. at top (E4)	R3 Td start		DFG/WMM **
Minimum storage temp. at top (E4)	R3 Td stop		Glycol type *
Maximum storage temp. at top (E4)	Set time		Glycol percentage *
Current storage temp. at centre (E3)			Tolerance for solar yield
Minimum storage temp. at centre (E3)			Code change
Maximum storage cylinder			
temperature at centre (E3)			
Current return line temperature (E5)			
Minimum return line temperature (E5)			
Maximum return line temperature (E5)			
Flow rate *			
Daily yield *			
Total yield *			

* Displayed only if yield metering mode is equivalent to 1 or 2.

11.8 Basic system diagram 8:

1 collector array, 2 storage cylinders (hot water and buffer), return line temperature increase

System 8 has one collector surface, two storage cylinders, one solid fuel boiler and one return line temperature increase. The control unit controls the solar function (temperature difference regulation for 2

storage cylinders, priority logic), and the return line temperature increase (temperature difference regulation). Heat metering is also possible, e.g. using an impeller flow meter.

A1 NWMM A2	Water Buffer E2 E4 E3	A3	
i			
Information	Program	Manual operation	Basic setting
<u> </u>	<u> </u>	<u> </u>	<u> </u>
Current collector temperature (E1)	Maximum temperature of storage cylinder 1	Pump A1 off/on	Code entry
Minimum collector temperature (E1)	Solar circuit storage 1 Td Start	A2 off/on	Reset/factory setting
Maximum collector temperature (E1)	Solar circuit storage 1 Td Stop	A3 off/on	Select basic configuration
Current temperature of storage cylinder 1 at bottom (E2)	Maximum temperature of storage cylinder 2	A4 off/on	Maximum collector temperature
Minimum temperature of storage cylinder 1 at bottom (E2)	Solar circuit storage cylinder 2 Td Start		Priority storage cylinder
Maximum temperature of storage cylinder 1 at bottom (E2)	Solar circuit storage cylinder 2 Td Stop		Mode yield metering
Current temp. of storage 2 at top (E4)	R2 Td start		Volume flow *
Min. temp. of storage 2 at top (E4)	R2 Td stop		DFG/WMM **
Max. temp. of storage 2 at top (E4)	Set time		Glycol type *
Current return line temperature (E5)			Glycol percentage *
Minimum return line temperature (E5)			Max. temp. for return line
Maximum return line temperature (E5)			Code change
Current temp. storage 2 - bottom (E3)			
Min. temp. storage 2 - bottom (E3)			
Max. temp. storage 2 - bottom (E3)			
Flow rate *			
Daily yield 1/2 *			
Total yield 1/2 *			

* Displayed only if yield metering mode is equivalent to 1 or 2.

11.9 Basic system diagram 9:

1 collector array, 2 storage cylinders (hot water and buffer), return line temperature increase

System 9 has one collector surface, two storage cylinders, one solid fuel boiler and one return line temperature increase. The control unit controls the solar function (temperature difference regulation for 2

storage cylinders, priority logic), and the return line temperature increase (temperature difference regulation). Heat metering is also possible, e.g. using an impeller flow meter.

T WMM A1 A2	E2 E2 E3 A3		
i			
Information	Program	Manual operation	Basic setting
Current collector temperature (E1)	Maximum temperature of storage cylinder 1	Pump A1 off/on	Code entry
Minimum collector temperature (E1)	Solar circuit storage 1 Td Start	A2 off/on	Reset/factory setting
Maximum collector temperature (E1)	Solar circuit storage 1 Td Stop	A3 off/on	Select basic configuration
Current temperature of storage cylinder 1 at bottom (E2)	Maximum temperature of storage 2	A4 off/on	Maximum collector temperature
Minimum temperature of storage cylinder 1 at bottom (E2)	Solar circuit storage 2 Td Start		Priority storage cylinder
Max. temp. of storage 1 at bottom (E2)	Solar circuit storage 2 Td Stop		Mode yield metering
Current temp. of storage 2 at top (E4)	R2 Td start		Volume flow *
Minimum temp. of storage 2 at top (E4)	R2 Td stop		DFG/WMM **
Maximum temp. of storage 2 at top (E4)	Set time		Glycol type *
Current return line temperature (E5)			Glycol percentage *
Minimum return line temperature (E5)			Maximum temperature return line heating
Maximum return line temperature (E5)			Code change
Current temp. of storage 2 - bottom (E3)			
Min. temp. of storage 2 - bottom (E3)			
Max. temp. of storage 2 at bottom (E3)			
Flow rate *			
Daily yield 1/2*			
Total yield 1/2*			

* Displayed only if yield metering mode is equivalent to 1 or 2.

١

11.10 Basic system diagram 10:

1 collector array, 1 storage cylinder, swimming pool, return line temperature increase

System 10 has one collector surface, one storage cylinder, one swimming pool and one return line temperature increase. The control unit controls the solar function (temperature difference regulation for storage cylinder and swimming pool, priority logic), and the return line temperature increase (temperature difference regulation). Heat metering is also possible, e.g. using an impeller flow meter.

A1 WMM A2	E4 -E2 A3	E3 Sum	5 000000000000000000000000000000000000
i			
Information	Program	Manual operation	Basic setting
Current collector temperature (E1)	Max temp of storage 1	I Pump A1 off/on	Code entry
Minimum collector temperature (E1)	Solar circuit storage	A2 off/on	Reset/factory setting
	cylinder 1 Td Start		Reservaciory setting
Maximum collector temperature (E1)	Solar circuit storage	A3 off/on	Select basic
, ,	cylinder 1 Td Stop		configuration
Current temperature of storage cylinder 1	Maximum temperature of	A4 off/on	Maximum collector
at bottom (E2)	swimming pool		temperature
Min. temp. of storage 1 at bottom (E2)	Solar circuit pool Td start		Priority storage cylinder
Max. temp. of storage 1 at bottom (E2)	Solar circuit pool Td stop		Mode yield metering
Current temp. of storage 1 at centre (E4)	R2 Td start		Volume flow *
Min. temp. of storage 1 at centre (E4)	R2 Td stop		DFG/WMM **
Max. temp. of storage 1 at centre (E4)	Set time		Glycol type *
Current return line temperature (E5)	Maintenance (summer/winter)		Glycol percentage *
Minimum return line temperature (E5)			Maximum temperature for return line
Maximum return line temperature (E5)			Code change
Current swimming pool temperature (E3)			
Minimum swimming pool temperature (E3)			
Max. swimming pool temperature (E3)			
Flow rate *			
Daily yield 1/2*			
Total yield 1/2*			

* Displayed only if yield metering mode is equivalent to 1 or 2.

11.11 Basic system diagram 11:

1 collector array, 1 storage cylinder, swimming pool, return line temperature increase

System 11 has one collector surface, one storage cylinder, one swimming pool and one return line temperature increase. The control unit controls the solar function (temperature difference regulation for storage cylinder and swimming pool, priority logic), and the return line temperature increase (temperature difference regulation). Heat metering is also possible, e.g. using an impeller flow meter.

I	I	I	I
Current collector temperature (E1)	Maximum temperature of storage cylinder 1	Pump A1 off/on	Code entry
Minimum collector temperature (E1)	Solar circuit storage cylinder 1 Td Start	A2 off/on	Reset/factory setting
Maximum collector temperature (E1)	Solar circuit storage cylinder 1 Td Stop	A3 off/on	Select basic configuration
Current temperature of storage cylinder 1 at bottom (E2)	Maximum temperature of swimming pool	A4 off/on	Maximum collector temperature
Min. temp. of storage 1 at bottom (E2)	Solar circuit pool Td start		Priority storage cylinder
Max. temp. of storage 1 - bottom (E2)	Solar circuit pool Td stop		Mode yield metering
Current temp. of storage 1 - centre (E4)	R2 Td start		Volume flow *
Minimum temp. of storage 1 - centre (E4)	R2 Td stop		DFG/WMM **
Max. temp. of storage 1 - centre (E4)	Set time		Glycol type *
Current return line temperature (E5)	Maintenance (summer/winter)		Glycol percentage *
Minimum return line temperature (E5)			Code change
Maximum return line temperature (E5)			
Current swimming pool temp. (E3)			
Minimum swimming pool temp. (E3)			
Maximum swimming pool temp. (E3)			
Flow rate *			
Daily yield 1/2*			
Total yield 1/2*			

* Displayed only if yield metering mode is equivalent to 1 or 2.

11.12 Basic system diagram 12:

1 collector array, 1 storage cylinder, swimming pool, auxiliary heating

System 12 has one collector surface, one storage cylinder, one swimming pool and one auxiliary heating. The control unit controls the solar function (temperature difference regulation for storage cylinder and swimming pool, priority logic), and the auxiliary heating function (temperature difference regulation, timeframe). Heat metering is also possible, e.g. using an impeller flow meter.

* Displayed only if yield metering mode is equivalent to 1 or 2.

11.13 Basic system diagram 13:

1 collector array, 1 storage cylinder, swimming pool, auxiliary heating

System 13 has one collector surface, one storage cylinder, one swimming pool and one auxiliary heating function. The control unit controls the solar function (temperature difference regulation for storage cylinder and swimming pool, priority logic), and the auxiliary heating (temperature difference regulation, timeframe). Heat metering is also possible, e.g. using an impeller flow meter.

ν	<u>Le</u>		7
Info	Program	Manual operation	Basic setting
I			Ι
Current collector temperature (E1)	Timeframe R2 start	Pump A1 off/on	Code entry
Minimum collector temperature (E1)	Timeframe R2 stop	A2 off/on	Reset/factory setting
Maximum collector temperature (E1)	Maximum temperature of	A3 off/on	Select basic
	storage cylinder		configuration
Current temperature of storage	Solar circuit Td start	A4 off/on	Maximum collector
cylinder 1 at bottom (E2)			temperature
Minimum temperature of storage cylinder 1 at bottom (E2)	Solar circuit Td stop		Priority storage cylinder
Maximum temperature of storage	Maximum temperature		Mode yield metering
cylinder 1 at bottom (E2)	Swimming pool		
Current temperature of storage	Solar circuit pool Td start		Volume flow *
cylinder 1 at top (E3)			
Minimum temperature of storage	Solar circuit pool Td stop		DFG/WMM **
cylinder 1 at top (E3)	-		
Maximum temperature of storage	Start temperature, auxiliary		Glycol type *
cylinder 1 at top (E3)	heating		
Current swimming pool temp. (E4)	Set time		Glycol percentage *
Minimum swimming pool temp. (E4)			Tolerance for solar yield
Maximum swimming pool temp. (E4)			Code change
Flow rate *			
Daily yield 1/2*			
Total yield 1/2*			

* Displayed only if yield metering mode is equivalent to 1 or 2.

11.14 Basic system diagram 14:

2 collector arrays, 1 storage cylinder, auxiliary heating

* Displayed only if yield metering is active.

11.15 Basic system diagram 15:

2 collector arrays, 1 storage cylinder, return line temperature increase

System 15 has two collector surfaces, one storage cylinder and one return line temperature increase. The control unit regulates the solar function (temperature difference regulation for 2 collector arrays), and the return line temperature increase (temperature difference regulation). Heat metering is also possible, e.g. using an impeller flow meter.

K1 = Collector array 1K2 = Collector array 2

* Displayed only if yield metering is active.

11.16 Basic system diagram 16:

1 collector array, 1 storage cylinder, circulation, anti-Legionnaire's disease

System 16 has one collector surface, one storage cylinder, one timer-controlled or impulse-controlled circulation pump and one Anti-Legionnaire's disease function. The control unit regulates the solar function (temperature difference regulation), the anti-Legionnaire's disease function (thermostat, timeframe \rightarrow fixed, preset period) and the impulse-controlled circulation (impulse) or thermal circulation (thermostat, 2 timeframes). Heat metering is also possible, e.g. using an impeller flow meter. For the anti-Legionnaire's disease function E2 is used as reference sensor.

* Displayed only if yield metering is active.

- ** Displayed only if yield metering mode is equivalent to 2.
- *** Displayed only if impulse-controlled circulation is active.
- **** Displayed only if thermal circulation is active.

11.17 Basic system diagram 17:

1 collector array, 2 storage cylinder, thermal transfer, return line temperature increase

System 17 has one collector surface, two storage cylinders, one thermal transfer function and one return line temperature increase. The control unit controls the solar function (temperature difference regulation), the thermal transfer (temperature difference regulation, timeframe) and the return line temperature increase (temperature difference regulation). Heat metering is also possible, e.g. using an impeller flow meter.

i			
Information	Program	Manual operation	Basic setting
Current collector temperature (E1)	Timeframe R2 start	Pump A1 off/on	Code entry
Minimum collector temperature (E1)	Timetrame R2 stop	A2 off/on	Reset/factory setting
Maximum collector temperature (E1)	Maximum temperature of storage cylinder	A3 off/on	Select basic configuration
Current storage cylinder temperature at bottom (E2)	Solar circuit Td start	A4 off/on	Maximum collector temperature
Minimum storage temp bottom (E2)	Solar circuit Td stop		Mode yield metering
Maximum storage cylinder	Max temp. of transfer		Volume flow *
temperature at bottom (E2)	storage cylinder		
Current storage cylinder temperature at top (E4)	R2 Td start		DFG/WMM **
Min. storage temperature at top (E4)	R2 Td stop		Glycol type *
Max. storage temperature at top (E4)	R3 Td start		Glycol percentage *
Current temperature of thermal	R3 Td stop		Maximum temperature
transfer storage cylinder at centre (E3)			return line heating
Minimum temperature of thermal	Set time		Code change
transfer storage cylinder at centre (E3)			
Minimum temperature of thermal			
transfer storage cylinder at centre (E3)			
Current return line temperature (E5)			
Iviinimum return line temperature (E5)			
Waximum return line temperature (E5)			
Dally yield *			
Total yield *			

* Displayed only if yield metering is active.

11.18 Basic system diagram 18:

1 collector array, 2 storage cylinder, thermal transfer, return line monitor

System 18 has one collector surface, two storage cylinders, one thermal transfer function and one return line monitor. The control unit controls the solar function (temperature difference regulation), the

١

thermal transfer (temperature difference regulation, timeframe) and the return line monitor (temperature difference regulation). Heat metering is also possible, e.g. using an impeller flow meter.

A1 E2-			
i			~
Information	Program	Manual operation	Basic setting
I	Ī	l	
Current collector temperature (E1)	Timeframe R2 start	Pump A1 off/on	Code entry
Minimum collector temperature (E1)	Timeframe R2 stop	A2 off/on	Reset/factory setting
Maximum collector temperature (E1)	Maximum temperature of storage cylinder	A3 off/on	Select basic configuration
Current storage cylinder temperature at bottom (E2)	Solar circuit Td start	A4 off/on	Maximum collector temperature
Minimum storage cylinder temperature at bottom (E2)	Solar circuit Td stop		Mode yield metering
Maximum storage cylinder temperature at bottom (F2)	Max temp. of transfer		Volume flow *
Current storage cylinder temperature at top (F4)	R2 Td start		DFG/WMM **
Minimum storage temp, at top (E4)	R2 Td stop		Glycol type *
Maximum storage cylinder temperature at top (E4)	R3 Td start		Glycol percentage *
Current temperature of thermal transfer storage cylinder at centre (E3)	R3 Td stop		Code change
Minimum temperature of thermal	Set time		
Minimum temperature of thermal			
transfer storage cylinder at centre (F3)			
Current return line temperature (E5)			
Minimum return line temperature (E5)			
Maximum return line temperature (E5)			
Flow rate *			
Daily vield *			
Total yield *			

* Displayed only if yield metering is active.

11.19 Basic system diagram 19:

1 collector array, 2 storage cylinder, thermal transfer, return line monitor (with solid fuel boiler)

System 19 has one collector surface, two storage cylinders, one thermal transfer function and one return line monitor. The control unit controls the solar function (temperature difference regulation), the thermal transfer (temperature difference regulation, timeframe) and the return line monitor (temperature difference regulation). Heat metering is also possible, e.g. using an impeller flow meter.

FSK = solid fuel boiler

i			~
Information	Program	Manual operation	Basic setting
I	Ī	l	
Current collector temperature (E1)	Timeframe R2 start	Pump A1 off/on	Code entry
Minimum collector temperature (E1)	Timeframe R2 stop	A2 off/on	Reset/factory setting
Maximum collector temperature (E1)	Maximum temperature of storage cylinder	A3 off/on	Select basic configuration
Current storage cylinder temperature at bottom (E2)	Solar circuit Td start	A4 off/on	Maximum collector temperature
Minimum storage cylinder temperature at bottom (E2)	Solar circuit Td stop		Mode yield metering
Maximum storage cylinder temperature at bottom (E2)	Max temp. of transfer storage cylinder		Volume flow *
Current storage cylinder temperature at top (E4)	R2 Td start		DFG/WMM **
Minimum storage cylinder temperature at top (E4)	R2 Td stop		Glycol type *
Maximum storage cylinder temperature at top (E4)	R3 Td start		Glycol percentage *
Current temperature of thermal transfer storage cylinder at centre (E3)	R3 Td stop		Code change
Minimum temperature of thermal transfer storage cylinder at centre (E3)	Set time		
Minimum temperature of thermal transfer storage cylinder at centre (E3)			
Current return line temperature (E5)			
Minimum return line temperature (E5)			
Maximum return line temperature (E5)			
Flow rate *			
Daily yield *			
Total yield *			

* Displayed only if yield metering is active.
** Displayed only if yield metering mode is equivalent to 2.

12 RECTIFICATION OF FAULTS

There are basically two kinds of system fault:

- Faults that are recognised by the control unit and which it can therefore indicate
- · Faults that cannot be indicated by the control unit

12.1 Faults with error message

Error display	Possible causes	Action
Flashing	 Sensor cable interrupted Sensor defective 	 Check cables Check sensor resistance value, replace sensor if necessary
$ \begin{array}{c} \blacksquare \blacksquare \overline{X} \blacksquare \blacksquare \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ Flashing \end{array} $	 Short circuit in sensor wiring Sensor defective 	 Check cables Check sensor resistance value, replace if necessary
Circulation error: no flow rate Flashing Additionally in the case of energy yield metering:	 Error in pump connection Pump defective Air in the system Flow rate counter defective Connection to flow rate meter defective Sensor cable interrupted Sensor defective 	 Check cabling Replace pump Bleed system Check whether, when the system is running, the impeller wheel of the meter moves (if visible) Check cables Check cables Check sensor resistance value, replace sensor if necessary
Legionella error: no flow rate	 Error executing anti- legionella function 	Contact your fitter or supplier

12.2 Faults without error message

Faults and errors that are not displayed can be checked against the following table and possible causes and sources of error identified. If, based on the description, fault rectification is not possible, you will need to contact the supplier or installer of the system.

Errors relating to the 230 V AC voltage supply may only be rectified by trained personnel

Error	Possible causes	Action
No display function	No 230 V power supply	 Switch on or connect the control unit Check domestic fuse box for connection
À	Fuse within device is defective	 Test fuse, replace with new, type 2A/T fuse if necessary. Test 230 V components for short circuit
	Device defective	Contact the supplier
Control unit does not work	 Control unit is in manual mode Switch-on condition not met 	 Exit "manual" menu Wait until the switch-on condition is met
"Pump" symbol rotates, but pump does not work	 Connection to pump interrupted. Pump has seized. No power to switching output. 	 Test cable to pump Ensure the pump is running Contact supplier
Displayed temperature fluctuates strongly at rapid intervals	 Sensor wires are positioned close to 230 V cables Long sensor wires extended without shielding Device defective 	 Lay sensor wires in a different way shield sensor wires Shield sensor wires Contact the supplier

13 TECHNICAL DATA SDC 306

Housing	
Material	100% recyclable ABS casing for wall-mounted installation
Dimensions (H x W x D) in mm, weight	175 x 134 x 56; approx. 360 g
Protection class	IP20 in accordance with VDE 0470
Electrical values	
Operating voltage	AC 230 Volt, 50 Hz, -10+15%
Internal device fuse	Micro-fuse 5 x 20mm 2 A/surge-proof
Radio interference level	N in accordance with VDE 0875
Maximum cable cross-section 230 V connections	2.5 mm ² fine-strand/single-strand
Temperature sensor / temperature range	PTF6 - 25℃ - 200℃ PT1000, 1.000 kΩ at 0℃
Testing voltage	4 kV 1 min in accordance with VDE 0631
Switching output Output depending on switching output Total output for all outputs	230 V~ / 1 A / approx. 230 VA for $\cos \varphi = 0.7$ -1.0 2A/ approx. 460 VA
Fuse protection	Micro-fuse 5 x 20 mm, 2 A/T (2 amp, fine-wire)
Other	
Recommended flow meter	PVM 1.5/90 1500l/h, Tmax >=90℃, 10l/impulse
Operating temperature	0 + 50℃
Storage temperature	-10 + 65℃

14 RESISTANCE TABLE PT1000

The correct function of the temperature sensor can be checked against the following temperature resistance table, using a resistance measurement device:

Temperature	Resistance (Ohms)	Temperature	Resistance (Ohms)
in °C		in °C	
-30	882	60	1232
-20	921	70	1271
-10	960	80	1309
0	1000	90	1347
10	1039	100	1385
20	1077	120	1461
30	1116	140	1535
40	1155	200	1758
50	1194		

Manufacturer of SDC 306 control unit devices: PROZEDA GmbH